Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Professional Business Review ; 8(1), 2023.
Article in English | Scopus | ID: covidwho-2279857

ABSTRACT

Purpose: The objective of this study is to look at the problems that arise related to the distribution of subsidies provided by the Government and also to examine the extent to which the principles in Lean are applied and Lean approach can be applied in the management of subsidy distribution among farmers. Theoretical Framework: The Malaysian government faces issues and challenges on food insufficiency and the importance of ensuring food security in the country and paddy is a major food commodity in Malaysia and an important factor in terms of security, poverty reduction and social issues. As the number of COVID-19 cases increases in the country, there is a heated debate on the appropriate measures that should be taken by the Government to curb the surge of paddy issue. Methodology: For that purpose, a survey was conducted on 10 senior government officials who manage matters related to fertilizer subsidies in the Ministry, Farmers Organization Board, Area Farmers Organization, Department of Agriculture and Subsidy Product Suppliers and 20 farmers in the area studied. by using Lean Management as the main point in this study. Findings: The collected data were analyzed using ATLAS.ti and Microsoft Excel. The results of this study show that most of the officers interviewed do not really understand the Lean philosophy and many officers consider the 5S to be Lean. Research Implications: An understanding of Lean is critical because the Lean approach is a sustainable way to achieve operational excellence and can be applied in many areas. Originality/Value: This study analyzed the issue arised during the during the distribution of rise subsidies throguh lean management. © 2022 AOS-Estratagia and Inovacao. All rights reserved.

2.
Journal of Hydrology ; 612:N.PAG-N.PAG, 2022.
Article in English | Academic Search Complete | ID: covidwho-2015672

ABSTRACT

• MOD16 products indicated significant underestimations in all paddy rice ET observations. • R n estimation in overcast conditions and LAI reconstruction were two key causes. • Daily R n estimations under all-sky conditions by a global cloudy index algorithm were improved by 40.6%. • Daily LAI dynamics estimated by the LTDG_PhenoS algorithm were improved by 818.7%. • Daily ET estimations were improved by 68.7%. Reliable estimations in evapotranspiration (ET) of paddy rice ecosystems by satellite products are critical because of their important roles in regional hydrological processes and climate change. However, the NASA MODIS ET products (MOD16A2) and its derivatives do not have good correlations with all global paddy rice ET observations. In this research, MOD16 model sensitivity analyses and parameter optimization strategies were conducted in order to solve the problem. Results suggested that underestimation of daily net radiation (R n) in overcast conditions and less satisfactory reconstruction of field-scale leaf area index (LAI) growth trajectory from the start date of field flooding and transplanting (FFTD) to the end of growing seasons by MODIS coarse vegetation index were identified as two major causes. A Light and Temperature-Driven Growth model and a Phenology-based LAI temporal Smoothing method fusion algorithm (LTDG_PhenoS) and an improved R n estimation method were introducted and evaluated in paddy rice fields in South Korea, Japan, China, Philippines, India, Spain, Italy, and the USA from 2002 to 2019. The LTDG_PhenoS algorithm considers Landsat and MODIS EVI observations and meteorological data as input variables and 30-m LAI daily time series as outcomes. Introducing the global cloudy index algorithm resulted in improved estimations of daily R n under all-sky conditions, with a significant decrease of root mean square error (RMSE) from 1.87 to 1.11 MJ m−2 day−1. The LTDG_PhenoS algorithm well reconstructed crop LAI growth dynamics from the FFTD to the end of rice growing seasons, with a substantial decline of RMSE from 1.49 to 0.27 m2/m−2. The FFTD estimations by the LTDG_PhenoS algorithm had an R2 of 0.97 and a small RMSE of less than 12-days. Daily ET rates estimated by novel algorithms had a substantial decline in RMSE from 2.88 to 0.90 mm day−1. [ FROM AUTHOR] Copyright of Journal of Hydrology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Agronomy ; 12(7):1583, 2022.
Article in English | ProQuest Central | ID: covidwho-1963665

ABSTRACT

Timely, accurate, and repeatable crop mapping is vital for food security. Rice is one of the important food crops. Efficient and timely rice mapping would provide critical support for rice yield and production prediction as well as food security. The development of remote sensing (RS) satellite monitoring technology provides an opportunity for agricultural modernization applications and has become an important method to extract rice. This paper evaluated how a semantic segmentation model U-net that used time series Landsat images and Cropland Data Layer (CDL) performed when applied to extractions of paddy rice in Arkansas. Classifiers were trained based on time series images from 2017–2019, then were transferred to corresponding images in 2020 to obtain resultant maps. The extraction outputs were compared to those produced by Random Forest (RF). The results showed that U-net outperformed RF in most scenarios. The best scenario was when the time resolution of the data composite was fourteen day. The band combination including red band, near-infrared band, and Swir-1 band showed notably better performance than the six widely used bands for extracting rice. This study found a relatively high overall accuracy of 0.92 for extracting rice with training samples including five years from 2015 to 2019. Finally, we generated dynamic maps of rice in 2020. Rice could be identified in the heading stage (two months before maturing) with an overall accuracy of 0.86 on July 23. Accuracy gradually increased with the date of the mapping date. On September 17, overall accuracy was 0.92. There was a significant linear relationship (slope = 0.9, r2 = 0.75) between the mapped areas on July 23 and those from the statistical reports. Dynamic mapping is not only essential to assist farms and governments for growth monitoring and production assessment in the growing season, but also to support mitigation and disaster response strategies in the different growth stages of rice.

4.
Remote Sensing ; 14(3):759, 2022.
Article in English | Academic Search Complete | ID: covidwho-1699775

ABSTRACT

Paddy rice cropping systems play a vital role in food security, water use, gas emission estimates, and grain yield prediction. Due to alterations in the labor structure and the high cost of paddy rice planting, the paddy rice cropping systems (single or double paddy rice) have drastically changed in China in recent years;many double-cropping paddy rice fields have been converted to single-cropping paddy rice or other crops, especially in southern China. Few maps detect single and double paddy rice and cropping intensity for paddy rice (CIPR) in China with a 30 m resolution. The Landsat-based and effective flooding signal-based phenology (EFSP) method, which distinguishes CIPR with the frequency of the effective flooding signal (EFe), was proposed and tested in China. The cloud/ice/shadow was excluded by bit arithmetic, generating a good observation map, and several non-paddy rice masks were established to improve the classification accuracy. Threshold values for single and double paddy rice were calculated through the mapped data and agricultural census data. Image processing (more than 684,000 scenes) and algorithm implementation were accomplished by a cloud computing approach with the Google Earth Engine (GEE) platform. The resultant maps of paddy rice from 2014 to 2019 were evaluated with data from statistical yearbooks and high-resolution images, with producer (user) accuracy and kappa coefficients ranging from 0.92 to 0.96 (0.76–0.87) and 0.67–0.80, respectively. Additionally, the determination coefficients for mapped and statistical data were higher than 0.88 from 2014 to 2019. Maps derived from EFSP illustrate that the single and double paddy rice systems are mainly concentrated in the Cfa (warm, fully humid, and hot summer, 49% vs. 56%) climate zone in China and show a slightly decreasing trend. The trend of double paddy rice is more pronounced than that of single paddy rice due to the high cost and shortages of rural household labor. However, single paddy rice fields expanded in Dwa (cold, dry winter, and hot summer, 11%) and Dwb (cold, dry winter, and warm summer, 9%) climate zones. The regional cropping intensity for paddy rice coincides with the paddy rice planting area but shows a significant decrease in south China, especially in Hunan Province, from 2014 to 2019. The results demonstrate that EFSP can effectively support the mapping of single and double paddy rice fields and CIPR in China, and the combinations of Landsat 7 and 8 provide enough good observations for EFSP to monitor paddy rice agriculture. [ FROM AUTHOR];Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL